Algorithm validation using multicolor phantoms

نویسندگان

  • Daniel V. Samarov
  • Matthew L. Clarke
  • Ji Youn Lee
  • David W. Allen
  • Maritoni Litorja
  • Jeeseong Hwang
چکیده

We present a framework for hyperspectral image (HSI) analysis validation, specifically abundance fraction estimation based on HSI measurements of water soluble dye mixtures printed on microarray chips. In our work we focus on the performance of two algorithms, the Least Absolute Shrinkage and Selection Operator (LASSO) and the Spatial LASSO (SPLASSO). The LASSO is a well known statistical method for simultaneously performing model estimation and variable selection. In the context of estimating abundance fractions in a HSI scene, the "sparse" representations provided by the LASSO are appropriate as not every pixel will be expected to contain every endmember. The SPLASSO is a novel approach we introduce here for HSI analysis which takes the framework of the LASSO algorithm a step further and incorporates the rich spatial information which is available in HSI to further improve the estimates of abundance. In our work here we introduce the dye mixture platform as a new benchmark data set for hyperspectral biomedical image processing and show our algorithm's improvement over the standard LASSO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles.

PURPOSE To investigate the potential of spectral computed tomography (CT) (popularly referred to as multicolor CT), used in combination with a gold high-density lipoprotein nanoparticle contrast agent (Au-HDL), for characterization of macrophage burden, calcification, and stenosis of atherosclerotic plaques. MATERIALS AND METHODS The local animal care committee approved all animal experiments...

متن کامل

Validation of an electron Monte Carlo dose calculation algorithm in the presence of heterogeneities using EGSnrc and radiochromic film measurements

The purpose of this study is to validate Eclipse's electron Monte Carlo algorithm (eMC) in heterogeneous phantoms using radiochromic films and EGSnrc as a reference Monte Carlo algorithm. Four heterogeneous phantoms are used in this study. Radiochromic films are inserted in these phantoms, including in heterogeneous media, and the measured relative dose distributions are compared to eMC calcula...

متن کامل

Organ Dose Measurement in Computed Tomography Using Thermoluminescence Dosimeter in Locally Developed Phantoms

Introduction: Organ dose estimation using thermoluminescence dosimeter (TLD) is known to be a standard, although many other methods, such as simulation software, optically stimulated luminescent dosimeters, and photodiodes are still in use. This study aimed at directly measuring mean organ doses to the selected organs in the head/neck, chest, and abdominal regions from four computed tomography ...

متن کامل

New lower bounds for two multicolor classical Ramsey numbers

We present an algorithm to find lower bounds for multicolor classical Ramsey numbers by using 2-normalized cyclic graphs of prime order, and use it to obtain new lower bounds for two multicolor classical Ramsey numbers: R(3, 3, 12) ≥ 182, R(3, 3, 13) ≥ 212.

متن کامل

Digital perfusion phantoms for visual perfusion validation.

OBJECTIVE Despite the increasingly broad use of perfusion applications, we still have no generally accessible means for their verification: The common sense of perfusion maps and "bona fides" of perfusion software vendors remain the only grounds for acceptance. Thus, perfusion applications are one of a very few clinical tools considerably lacking practical objective hands-on validation. MATER...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012